NTRODUGTION TO COMPUTER VSION

Atlas Wang

Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/

"Structure from Motion"

- Humans perceive the 3D structure in their environment by moving around it
- When the observer moves, objects around them move different amounts depending on their distance from the observer.
- Even you stand still, most people have two eyes!

- Finding structure from motion presents a similar problem in stereo vision.
- Estimating three-dimensional structures from two-dimensional image sequences that may be coupled with local motion signals
- Correspondence between images and reconstruction of 3D object needs to be found

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Camera Calibration (a.k.a. pose estimation)	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D correspondences
Reconstruction (including epipolar)	estimate	estimate	2D to 2D correspondences

Triangulation (Two-view geometry)

Triangulation

Create two points on the ray:

1) find the camera center; and
2) apply the pseudo-inverse of P on x. Then connect the two points.
This procedure is called backprojection

Triangulation

Triangulation

Given a set of (noisy) matched points

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}
$$

and camera matrices
$\mathbf{P}, \mathbf{P}^{\prime}$

Estimate the 3D point
X

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$

known
known
Can we compute \boldsymbol{X} from a single correspondence \boldsymbol{x} ?

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$

This is a similarity relation because it involves homogeneous coordinates

How do we solve for unknowns in a similarity relation? (e.g., how to remove the unknown scale?)

Linear algebra reminder: cross product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$
c=a \times b
$$

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

cross product of two vectors in the same direction is zero vector

$$
\boldsymbol{a} \times \boldsymbol{a}=0
$$

remember this!!!

$$
\boldsymbol{c} \cdot \boldsymbol{a}=0 \quad \boldsymbol{c} \cdot \boldsymbol{b}=0
$$

Linear algebra reminder: cross product

Cross product

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

Can also be written as a matrix multiplication

$$
\boldsymbol{a} \times \boldsymbol{b}=[\boldsymbol{a}]_{\times} \boldsymbol{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Back to triangulation

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$

Same direction but differs by a scale factor

How can we rewrite this using vector products?

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$

Same direction but differs by a scale factor

$\mathbf{x} \times \mathbf{P} \boldsymbol{X}=\mathbf{0}$

Cross product of two vectors of same direction is zero
(this equality removes the scale factor)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Do the same after first expanding out the camera matrix and points

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{ll}
- & \boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top}- \\
- & \boldsymbol{p}_{3}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\mid
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{l}
\boldsymbol{p}_{\top}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{\top}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]} \\
{\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \times\left[\begin{array}{c}
\boldsymbol{p}_{1}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Using the fact that the cross product should be zero

$$
\begin{gathered}
\mathbf{X} \times \mathbf{P} \boldsymbol{X}=\mathbf{0} \\
{\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{y} \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

Using the fact that the cross product should be zero

$$
\begin{gathered}
\mathbf{X} \times \mathbf{P} \boldsymbol{X}=\mathbf{0} \\
{\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

$$
\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

Remove third row, and rearrange as system on unknowns

$$
\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top}
\end{array}\right] \boldsymbol{X}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\mathbf{A}_{i} \boldsymbol{X}=\mathbf{0}
$$

Concatenate the 2D points from both images

$\mathbf{A X}=\mathbf{0}$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$
\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top} \\
y^{\prime} \boldsymbol{p}_{3}^{\prime \top}-\boldsymbol{p}_{2}^{\prime \top} \\
\boldsymbol{p}_{1}^{\prime \top}-x^{\prime} \boldsymbol{p}_{3}^{\prime \top}
\end{array}\right] \boldsymbol{X}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$\mathbf{A X}=\mathbf{0}$

How do we solve homogeneous linear system?
S V D !

Epipolar geometry

Assuming pinhole cameras, given one 2D point on the left image, where is its counterpart on the right image, that is projected from the same 3D point?

Epipolar geometry

Just like we don't know the actual 3D point, here we don't know either camera center!
Let us just pretend to know them for now... and later they'll become parameters we have to estimate

Epipolar geometry

Epipolar geometry

Epipolar geometry

Epipolar constraint

The epipolar constraint is an important concept for stereo vision
Task: Match point in left image to point in right image

Left image
Right image

How would you do it?

The epipolar constraint is an important concept for stereo vision
Task: Match point in left image to point in right image

Left image
Right image
Want to avoid search over entire image
Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision
Task: Match point in left image to point in right image

Left image
Right image
Want to avoid search over entire image
Epipolar constraint reduces search to a single line
How do you compute the epipolar line?

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

The Essential Matrix is a 3×3 matrix that encodes epipolar geometry

Epipolar Line

$$
a x+b y+c=0 \quad \text { in vector form } \quad \boldsymbol{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

If the point \boldsymbol{X} is on the epipolar line \boldsymbol{l} then

$$
\boldsymbol{x}^{\top} \boldsymbol{l}=?
$$

Soif $\boldsymbol{x}^{\top \top} \boldsymbol{l}^{\prime}=0$ and $\mathbf{E} \boldsymbol{x}=\boldsymbol{l}^{\prime}$ then

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=\text { ? }
$$

Where does the essential matrix come from?

Camera-camera transform just like world-camera transform

These three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

Putting it Together

rigid motion

$$
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0
$$

$\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0$
$\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0$

$$
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0
$$

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

Essential Matrix
[Longuet-Higgins 1981]

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

2D points expressed in camera coordinate system (i.e., intrinsic matrices are identities)

How do you generalize to non-identity intrinsic matrices?

The
 fundamental matrix
 is a
 generalization
 of the
 essential matrix,
 where the assumption of
 Identity matrices

is removed

$\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}}=0$

The essential matrix operates on image points expressed in 2D coordinates expressed in the camera coordinate system

$$
\hat{\boldsymbol{x}^{\prime}}=\mathbf{K}^{\prime-1} \boldsymbol{x}^{\prime}
$$

$\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}}=0$

The essential matrix operates on image points expressed in 2D coordinates expressed in the camera coordinate system

$$
\begin{aligned}
& \hat{\boldsymbol{x}^{\prime}}=\mathbf{K}^{\prime-1} \boldsymbol{x}^{\prime} \\
& \hat{\boldsymbol{x}}=\mathbf{K}^{-1} \boldsymbol{x} \\
& \text { camera } \\
& \text { point } \\
& \text { image } \\
& \text { point }
\end{aligned}
$$

Writing out the epipolar constraint in terms of image coordinates

$$
\begin{gathered}
\boldsymbol{x}^{\prime \top}\left(\mathbf{(}^{\prime-\top} \mathbf{E K}^{-1}\right) \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
\end{gathered}
$$

Same equation works in image coordinates!

$$
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
$$

it maps pixels to epipolar lines

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E} \mathbf{K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{\prime-\top}\left[\mathbf{t}_{\times}\right] \mathbf{R} \mathbf{K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters
Now recall: why Tsai's algorithm wants to decompose P :-)

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E} \mathbf{K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{\prime-\top}\left[\mathbf{t}_{\times}\right] \mathbf{R K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?

Assume you have M matched image points (via Harris, SIFT...)

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?

$$
S \vee D
$$

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?
Set up a homogeneous linear system with 9 unknowns

$$
\begin{gathered}
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0 \\
{\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0}
\end{gathered}
$$

How many equation do you get from one correspondence?

$$
\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0
$$

ONE correspondence gives you ONE equation

$x_{m} x_{m}^{\prime} f_{1}+x_{m} y_{m}^{\prime} f_{2}+x_{m} f_{3}+$ $y_{m} x_{m}^{\prime} f_{4}+y_{m} y_{m}^{\prime} f_{5}+y_{m} f_{6}+$

$$
x_{m}^{\prime} f_{7}+y_{m}^{\prime} f_{8}+f_{9}=0
$$

$$
\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0
$$

Set up a homogeneous linear system with 9 unknowns

$$
\begin{aligned}
& {\left[\begin{array}{ccccccccc}
x_{1} x_{1}^{\prime} & x_{1} y_{1}^{\prime} & x_{1} & y_{1} x_{1}^{\prime} & y_{1} y_{1}^{\prime} & y_{1} & x_{1}^{\prime} & y_{1}^{\prime} & 1 \\
\vdots & \vdots \\
x_{M} x_{M}^{\prime} & x_{M} y_{M}^{\prime} & x_{M} & y_{M} x_{M}^{\prime} & y_{M} y_{M}^{\prime} & y_{M} & x_{M}^{\prime} & y_{M}^{\prime} & 1
\end{array}\right]\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7} \\
f_{8} \\
f_{9}
\end{array}\right]=\mathbf{0}} \\
& \text { S V D! }
\end{aligned}
$$

Example: epipolar lines

$$
\mathbf{F}=\left[\begin{array}{ccc}
-0.00310695 & -0.0025646 & 2.96584 \\
-0.028094 & -0.00771621 & 56.3813 \\
13.1905 & -29.2007 & -9999.79
\end{array}\right]
$$

$$
\begin{aligned}
\boldsymbol{l}^{\prime} & =\mathbf{F} \boldsymbol{x} \\
& =\left[\begin{array}{c}
0.0295 \\
0.9996 \\
-265.1531
\end{array}\right]
\end{aligned}
$$

8-point is sufficient in theory to estimate E/F... but least square often not robust enough

Example: solving for translation?

Problem: outliers $A_{4}-B_{4}$ and $A_{5}-B_{5}$ which incorrectly correspond
RANSAC solution $\underset{\substack{\text { Fischler \& Bolles in ' } 81 \text {. }}}{(\text { RANd }}$.

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
$\left[\begin{array}{c}x_{i}^{B} \\ y_{i}^{B}\end{array}\right]=\left[\begin{array}{c}x_{i}^{A} \\ y_{i}^{A}\end{array}\right]+\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

RANSAC

(RANdom SAmple Consensus) :
Fischler \& Bolles in '81.

This data is noisy, but we expect a good fit to a known model.

RANSAC

(RANdom SAmple Consensus) :
Fischler \& Bolles in '81.

Algorithm:

1. Sample (randomly) the number of points s required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model ($s=2$)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model ($s=2$)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model ($s=2$)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

$$
N_{\text {Inliers }}=14
$$

1. Sample (randomly) the number of points required to fit the model ($s=2$)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Keep only the matches at are "inliers" with respect to the "best" fundamental matrix (RANSAC)

RANSAC Summary

Good

- Robust to outliers, simple \& assumption-free idea
- Applicable for large number of objective function parameters
- Optimization parameters are relatively easier to choose

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Most common applications

- Estimating fundamental matrix (relating two views)
- Computing a homography (e.g., image stitching)

Recap: epipolar geometry \& camera calibration

- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E=K^{\top} F K^{\prime}$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters.
- Fundamental matrix lets us compute relationship up to scale for cameras with unknown intrinsic calibrations.
- Estimating the fundamental matrix is a kind of "weak calibration"

Depth and Camera

iPhone X

Intel laptop depth camera

What's different between these two images?

Objects that are close move more or less?

The amount of horizontal movement is inversely proportional to ...

The amount of horizontal movement is inversely proportional to ...

... the distance from the camera.

More formally...

$$
\frac{X}{Z}=\frac{x}{f}
$$

Disparity

$$
\begin{aligned}
d & =x-x^{\prime} \quad \text { (wrt to camera origin of image plane) } \\
& =\frac{b f}{Z}
\end{aligned}
$$

So, if I know x and x^{\prime}, I can

Disparity

$$
\begin{array}{rlr}
d & =x-x^{\prime} \quad \begin{array}{l}
\text { inversely proportional } \\
\\
\\
\end{array}=\frac{b f}{Z}
\end{array}
$$

compute depth!!

Depth Estimation via Stereo Matching

1. Rectify images
(make epipolar lines horizontal)
2. For each pixel
a. Find epipolar line
b. Scan line for best match

How would you do this?
Template Matching

$$
Z=\frac{b f}{d}
$$

Find this template

How do we detect the template in the following image?

Normalized cross-correlation (NCC).

Find this template

How do we detect the template in the following image?

1-output

True detections
thresholding

Normalized cross-correlation (NCC).

How can we improve depth estimation?
Too many discontinuities.
We expect disparity values to change slowly.

Let's make an assumption: depth should change smoothly
$E_{s}(d)=\sum V\left(d_{p}, d_{q}\right)$
smoothness term $\quad(p, q) \in \mathcal{E}$
\mathcal{E} : set of neighboring pixels
 neighborhood

Active stereo with structured light

- Project "structured" light patterns onto the object
- Simplifies the correspondence problem
- Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
iPhone X

iPhone 12 has lidar

"Semantic" Depth Estimation

(a) Input Image

(c) SceneNet Semantic Map

(b) Baseline Disparity Map

(d) SceneNet Disparity Map

(a) Input Image

(c) SceneNet Disparity Map

(b) Baseline Semantic Map

(d) SceneNet Semantic Map

眞 The University of Texas at Austin Electrical and Computer Engineering
Cockrell School of Engineering

